Property profile

Composition(mass fraction)(wt.%)[1]

Min: 0.40%C, 13.00%Ni, 13.00%Cr, 0.25%Mo, 2.00%W

 

Max: 0.50%C, 0.80%Si, 0.70%Mn, 0.35%P, 0.03%S, 15.00%Ni, 15.00%Ni, 0.40%Mo, 2.75%W

 

General properties[2-3]

Density

128 (≥)  Kg/m3

Price

7.8 - 65 RMB/Kg

 

Mechanical properties(Mainly linking to valve prodution and machinery manufacturing)[1]

Young’s modulus

243  kN/mm2

Tensile strength

705  MPa

Tensile strength(after annealing)

817  MPa

Proof strength Rp0.2

246  MPa

Proof strength Rp0.2(after annealing)

363  MPa

Elongation(at fracture)

44%

Hardness(Brinell)

221 

Impact energy KV

43  J

Reduction in cross section on fracture Z

43%

 

Thermal properties(Mainly linking to hot-work die and valve production)[1]

Melting point

5989 - 6128  °C

Thermal conductivity

23 - 98  W/m*K

Specific heat capacity

450 - 460  J/kg*K

Thermal expansion

70 - 57  e-6/K

 

 

Resistance properties(Mainly linking to valve production and hot-work die)[4]

Corrosion resistance

Great

Oxidation resistance

Great

 

 

Eco properties[5]

CO2 footprint(without recycle)

2.9  kg/kg

Recycle

√ (100% recyclable)

 

 

References

[1] Steels T. 4Cr14Ni14W2Mo - Stainless Steel,Heat-Resistant Steel and Special Alloy Steel - steel, 4Cr14Ni14W2Mo Datasheets, Supplier, Chemical composition, properties [Internet]. Tool-die-steels.com. 2020 [cited 28May 2020]. Available from: https://www.tool-die-steels.com/grades/Stainless-Steels-Special-Steel/31/140/4Cr14Ni14W2Mo.html.

[2] GB 4Cr14Ni14W2Mo Details, [cited 28 May, 2020]. Available from: https://b2b.baidu.com/ss?q=%E6%B1%9F%E6%B2%B9%E5%B8%82%E5%8D%9A%E5%A4%A7%E7%89%B9%E6%AE%8A%E9%92%A2%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%204Cr14Ni14W2Mo&from=b2b_straight&srcid=5103&from_restype=product.

[3] Price of 4Cr14Ni14W2Mo, [cited  28 May, 2020], Available from:https://b2b.baidu.com/ss?q=%E6%B1%9F%E6%B2%B9%E5%B8%82%E5%8D%9A%E5%A4%A7%E7%89%B9%E6%AE%8A%E9%92%A2%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%204Cr14Ni14W2Mo&from=b2b_straight&srcid=5103&from_restype=product. 

[4] Chan W, Kwok C, Lo K. Effect of laser surface melting and subsequent re-aging on microstructure and corrosion behavior of aged S32950 duplex stainless steel. Materials Chemistry and Physics. 2018; 207:451-464.

[5] Sandberg, H., Lagneborg, R., Lindblad, B., Axelsson, H. and Bentell, L., 2001. CO2 emissions of the Swedish steel industry. Scandinavian Journal of Metallurgy, 30(6), pp.420-425.